Time-dependent density functional theory with ultrasoft pseudopotentials: Real-time electron propagation across a molecular junction
نویسندگان
چکیده
A practical computational scheme based on time-dependent density functional theory TDDFT and ultrasoft pseudopotentials USPP is developed to study electron dynamics in real time. A modified Crank-Nicolson time-stepping algorithm is adopted, under plane-wave basis. The scheme is validated by calculating the optical absorption spectra for a sodium dimer and a benzene molecule. As an application of this USPP-TDDFT formalism, we compute the time evolution of a test electron packet at the Fermi energy of the left metallic lead crossing a benzene1,4 -dithiolate junction. A transmission probability of 5–7%, corresponding to a conductance of 4.0–5.6 S, is obtained. These results are consistent with complex band structure estimates and Green’s function calculation results at small bias voltages.
منابع مشابه
Ground- and excited-state properties of DNA base molecules from plane-wave calculations using ultrasoft pseudopotentials
We present equilibrium geometries, vibrational modes, dipole moments, ionization energies, electron affinities, and optical absorption spectra of the DNA base molecules adenine, thymine, guanine, and cytosine calculated from first principles. The comparison of our results with experimental data and results obtained by using quantum chemistry methods show that in specific cases gradient-correcte...
متن کاملFirst-principle molecular dynamics with ultrasoft pseudopotentials: parallel implementation and application to extended bioinorganic systems.
We present a plane-wave ultrasoft pseudopotential implementation of first-principle molecular dynamics, which is well suited to model large molecular systems containing transition metal centers. We describe an efficient strategy for parallelization that includes special features to deal with the augmented charge in the contest of Vanderbilt's ultrasoft pseudopotentials. We also discuss a simple...
متن کاملAll-electron density functional theory and time-dependent density functional theory with high-order finite elements.
We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core an...
متن کاملAbsorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional
Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...
متن کاملImplementation of ultrasoft pseudopotentials in large-scale grid-based electronic structure calculations
An implementation of Vanderbilt ultrasoft pseudopotentials in real-space grid-based electronic structure calculations is presented. Efficient utilization of these pseudopotentials requires the use of different grids for i wave functions, ii charge density, and iii sharply peaked operators within the atomic core radii. High-order interpolation between the various grids is important for accuracy,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006